Using Orientation Information for Qualitative Spatial Reasoning *Christian Freksa*, 1992

presented by Amenity Applewhite 23.5.2008

Outline

- Introduction
- Motivation
- Previous approaches
- Argument for qualitative orientation
- Directional orientation in 2D
- Augmenting qualitative relations
- Conceptual neighborhood theory
- Using the orientation-based framework
- Applications
- Further work

Introduction

An approach to represent **spatial knowledge** using qualitative, neighborhood-oriented spatial information.

Quantitative knowledge obtained by *measuring*:

Quantitative knowledge obtained by *measuring*:

"thirteen centimeters"

Quantitative knowledge obtained by *measuring*:

"thirteen centimeters"

- Requires mapping between object domain and scale domain
- Mapping can produce distortions

Qualitative knowledge obtained by *comparison* rather than *measuring*:

Qualitative knowledge obtained by *comparison* rather than *measuring*:

"longer"

Qualitative knowledge obtained by *comparison* rather than *measuring*:

"longer"

- Direct evaluation entirely within object domain
- Focuses knowledge processing on information relevant to decision making

Motivation: Why spatial?

- Spatial reasoning is essential to numerous actions and decisions
- Arguably, physical space is more fundamental than logical reason:
 - Spatial reasoning more "primitive" in nature
 - Logic as an abstraction of spatial reasoning

Cartesian framework Güsgen, 1989

Cartesian framework Güsgen, 1989

String representations Chang & Jungert, 1986

Cartesian framework Güsgen, 1989

String representations Chang & Jungert, 1986

Object-boundary and interior intersections Egenhofer & Franzosa, 1991

A TOUCH B

Cartesian framework Güsgen, 1989

String representations Chang & Jungert, 1986

Object-boundary and interior intersections Egenhofer & Franzosa, 1991

Cardinal direction grids Frank, 1991

Why qualitative orientation?

Availability of spatial information:

- Qualitative orientation is available through *pure perception*
- Other representations, such as Cartesian coordinates or cardinal orientation, refer to *extra-perceptual* information

Directional orientation in 2D

Directional orientation a ID feature determined by an oriented line

Oriented line specified by an ordered set of two points

Directional orientation in 2D

Directional orientation a ID feature determined by an oriented line

Oriented line specified by an ordered set of two points

Directional orientation in 2D

Relative Orientation specified by two oriented lines

Orientation of line bc relative to line ab

Same transitive

if ab=bc and bc=cd then ab=cd

Same transitive

Same transitive

wrt. location b and orientation ab

Same transitive

wrt. location b and orientation ab

Same transitive if ab=bc and bc=cd then ab=cd Opposite periodic

wrt. location b and orientation ab

Same transitive if ab=bc and bc=cd then ab=cd then ab=cdif ab=bc and bc=cd then ab=cd then a

wrt. location b and orientation ab

Same transitive if ab=bc and bc=cd then ab=cdif ab=bc and bc=cdif ab

wrt. location b and orientation ab

Same transitive if ab=bc and bc=cd then ab=cd**Opposite** periodic opposite ∞ left yields right opposite ∞ opposite ∞ left yields left

wrt. location b and orientation ab

Same transitive if ab=bc and bc=cd then ab=cd**Opposite** periodic opposite ∞ left yields right opposite ∞ opposite ∞ left yields left opposite ∞ opposite ∞ opposite ∞

left yields right

wrt. location b and orientation ab

Same transitive if ab=bc and bc=cd then ab=cd**Opposite** periodic opposite ∞ left yields right opposite ∞ opposite ∞ left yields left opposite ∞ opposite ∞ opposite ∞

Orientation is a circular dimension

left yields right

Augmenting qualitative relations

Front-back segmentation

- cognitively meaningful to people and animals
- most objects have this implicit dichotomy

8 disjoint orientation relations

- 0 straight-front 4 straight-back
- l right-front 5 left-back
- 2 right-neutral 6 left-neutral
- 3 right- back 7 left-front

Orientation-based qualitative location

5

6

_

1 0 7 front-back dichotomy wrt.

b

front-back dichotomy wrt. ab in b

32

Orientation-based qualitative location

_

front-back dichotomy wrt. ab in b front-back dichotomy wrt. ba in a

- Based on studies of temporal cognition
- Cognitive & computational advantages

- 15 qualitative relations
- 105 (unordered) pairs
- 30 conceptual neighbors

Utility

- Reflects represented world
- Reasoning strategies entirely within the represented domain
- Assist domain visualization
- Computationally restrict problem space to feasible operations

Orientation-based qualitative distance

- Finer spatial resolution conveys distance
- Does not increase orientation precision

Represented entities

Most approaches

- spatially extended objects
- convex or rectangular shapes

Points as basic entities, fundamental approach

- Properties & relations hold for entire spatial domain
- Shapes can be described as points with various levels of abstraction and precision; flexible

0D þoint	city on wide area map
ID extension	length of a road
2D projection	area of a lake
3D constellation	shape or group of objects

Using the orientation-based framework for inferences

- Describe one spatial vector with relation to another
 - Infer unknown vector relations based on known relations

Using the orientation-based framework for inferences

Given

- relation of <u>vector bc</u> to <u>vector ab</u>
- relation of <u>vector cd</u> to <u>vector bc</u>

Infer

location of <u>d</u> to <u>vector</u> <u>ab</u>

Using the orientation-based framework for inferences

 Consider front-back dichotomies for known vectors

Using the orientation-based framework for inferences

Consider front-back

dichotomies for known vectors

• c right-front (1) **ab**

Using the orientation-based framework for inferences

- Consider front-back dichotomies for known vectors
- c right-front (1) **ab**
- d right-back (3) **cb**

Using the orientation-based framework for inferences

- Consider front-back dichotomies for known vectors
- c right-front (1) **ab**
- d right-back (3) **cb**

Wrt. to original <u>vector</u> <u>ab</u>, <u>vector bd</u> is either right-front (1), front (0), or left front (2)

• Organize qualitative orientation-based inferences

 Neighboring rows and columns show conceptual neighbors

Initial conditions

• Possible locations of *c*

• Possible locations of *d*

• Orientation-less

c = d

d=b

+d

С

25% of all cases hold uncertainty

- neighboring possibilities increase orientation angle up to 180°
- degree of uncertainty is precisely known +d

$$t = \begin{cases} r+s & \text{for } r \text{ or } s \text{ even} \\ (r+s-1) \dots (r+s+1) & \text{for } r \text{ and } s \text{ odd} \end{cases}$$

- **r** orientation of **c** wrt. **ab**
- s the orientation of **d** wrt. **bc**
- t orientation of d wrt. ab

mod 8

Fine grain composition table

Applications

• Determine an unknown location in space based on own location and known location

• Wayfinding & route descriptions

Referencing work

257 citations in Google Scholar

A few examples:

- Computational methods for representing geographical concepts (Egenhofer, Glasgow, et al)
- Schematic maps for *robot navigation* (Freksa, et al)
- Pictorial language for retrieval of spatial relations from *image databases* (*Papadias*, et al)

Questions?