
The semantics of predicate logic

Readings: Section 2.4, 2.5, 2.6.

In this module, we will precisely define the semantic interpretation of

formulas in our predicate logic. In propositional logic, every formula

had a fixed, finite number of models (interpretations); this is not the

case in predicate logic. As a consequence, we must take more care

in defining notions such as satisfiability and validity, and we will see

that there cannot be algorithms to decide if these properties hold or

not for a given formula.

1

Models (2.4.1)

In the semantics of propositional logic, we assigned a truth value to

each atom. In predicate logic, the smallest unit to which we can

assign a truth value is a predicate P (t1, t2, . . . , tn) applied to

terms.

But we cannot arbitrarily assign a truth value, as we did for

propositional atoms. There needs to be some consistency.

We need to assign values to variables in appropriate contexts, and

meanings to functions and predicates. Intuitively, this is

straightforward, but we must define such things precisely in order to

ensure consistency of interpretation.

2

Example

In Module 5, we considered the formula

∀x(P (x) ∧ ¬Q(x)→ R(x)) .

Our interpretation of this statement was, “Every student who took

CS245, but did not pass CS245, failed CS245.”

Under this interpretation, x ranges over all students (say, at UW).

So, since x is a placeholder for a term, terms t denote UW students.

P , Q, and R, then are properties of students. We can think of them

as B-valued functions on UW students:

P (x) = “x took CS245”, Q(x) = “x passed CS245”,

R(x) = “x failed CS245”

3

More abstractly, P , Q, and R are sets:

P = {students who took CS245}

Q = {students who passed CS245}

R = {students who failed CS245}

Then P (x) is shorthand for x ∈ P , and similarly for Q and R.

4

We could also, however, interpret the predicate symbols P , Q, and

R as follows:

P = {natural numbers}

Q = {even numbers}

R = {odd numbers}

Then terms t range over some numeric domains, say the integers or

the real numbers, and the formula says that within that domain, all

natural numbers that are not even are odd.

As we see, there is no requirement that our interpretation be about

UW students, regardless of our initial motivation!

5

Finally, we could also apply the following interpretation:

P = {natural numbers}

Q = {even numbers}

R = {prime numbers}

Then the formula says that all natural numbers that are not even are

prime. This is clearly a false statement, but a possible interpretation

of the formula.

6

Another example

Consider the following formula:

∀x(∃yL(x, y)→ L(x, c))

We can take our domain of concrete values, in this case, to include

students and courses. Then c might denote the constant CS245,

and L is a B-valued function on two variables that we might define

as follows:

L(x, y) = “x is a student, y is a course, and x loves y”

Then the formula says that every student who loves a course must

love CS245.

7

Again, we might rephrase L as a set, this time of ordered pairs:

L = {(x, y) | x is a student, y is a course, and x loves y}

L is now a set of ordered pairs, which, in mathematical terms, we

call a relation .

More generally, we call a set of ordered pairs a binary relation, a set

of ordered triples a ternary relation, and a set of n-tuples an

n-place (or n-ary) relation. Further, a set of singletons is a

one-place (or unary) relation, or predicate. A zero-place (or nullary)

relation corresponds to a nullary predicate, which we use to model

atomic propositions, and is therefore either the constant T or the

constant F .

8

Models
An interpretation of a logical formula, comprising semantics for

terms, constants, function symbols, and predicate symbols, form

what is called a model .

Note that each of our interpretations included the following

elements:

• a domain of interpretation for values (e.g., UW Students,

integers, real numbers, etc.);

• meanings for each n-ary function symbol as n-ary

domain-valued functions on the the domain of interpretation;

• meanings for each n-ary predicate symbol as n-place relations.

These are the essential components of a model.

9

Here is the precise definition of a modelM for a given set of

predicate symbols P and function symbols F :

1. A nonempty set AM (the universe of concrete values);

2. A concrete element fM of AM for every nullary function

symbol (constant) f ∈ F ;

3. A concrete function fM : (AM)n → AM for every n-ary

function symbol f ∈ F ;

4. A subset PM of n-tuples over AM (i.e., an n-place relation on

AM) for every n-ary predicate symbol P ∈ P .

The textbook leaves off the superscriptM on AM, which is

unambiguous if the model is clear.

10

Interpreting terms in a model

Now that we have formalized the domains in which our

interpretations of predicate logic formulas will reside—models—we

can discuss how to interpret terms and predicates within a model.

LetM be a model and t be a term without variables. Then tM, the

interpretation of t inM, is given as follows:

• if t is a constant c, then tM = cM;

• if t = f(t1, . . . , tn), where f is an n-ary function symbol,

then tM = fM(tM1 , . . . , tMn).

Note that, strictly speaking, the second clause subsumes the first,

but we keep them separate for the sake of clarity.

11

Interpreting predicates in a model

Interpreting predicates in a model is similar to interpreting terms.

LetM be a model, P be a predicate symbol of arity n, and

t1, . . . , tn variable-free terms. Then we define

(P (t1, . . . , tn))M = PM(tM1 , . . . , tMn) .

But the model is the easy part....

12

What do we do about variables?
Suppose we have a formula such as

∀x(∃yL(x, y)→ L(x, c)) ,

where c is a constant (or nullary function symbol). Given a modelM, how

do we interpret a predicate like L(x, c) inM? (We’ll ignore the quantifiers

for the moment, and come back to them later.)

According to the definition, it would be something like

LM(xM, cM) .

But x is a variable (note that x is free in L(x, c)), so how can we evaluate

xM? We can’t find a specific element of the domain to assign to x,

because we don’t know what x is supposed to be!

The expression xM does not make sense.

13

Variables and environments

We need a way to intepret variables in a model.

Key observation: the meaning of a variable depends on (is

parameterized by) the specific value of the domain that gets

assigned to the variable.

Can we capture the notion of assigning values to variables as a

mathematical object?

Yes—we call it an environment .

An environment is basically a list of variable names and elements of

the domain to be assigned to them.

14

Example: if AM = {a, b, c}, then an environment σ might be

σ = {(x, a), (y, a), (z, b)}, where x, y, and z are variables.

Hence, an environment is essentially a look-up table between

variables and domain elements.

The domain of an environment is the set of variables upon which it

operates. In our example, the domain of σ, denoted domσ, is the

set {x, y, z}.

As the terminology suggests, we can view an environment as a

function that maps variables to domain elements. Hence, given a

variable v and an environment σ, we denote by σ(v) the result of

looking up v in σ.

In our example above, σ(x) = a, σ(y) = a, and σ(z) = b.

15

We extend environments as follows: if σ is an environment and

c ∈ AM, then we denote by σ[x 7→ c] the environment σ′ that is

identical to σ, except that σ′(x) = c.

Example: if AM = {a, b, c} and σ = {(x, a), (y, c)}, then

σ[z 7→ b] = {(x, a), (y, c), (z, b)}.

Further,

σ[z 7→ b][z 7→ a] = {(x, a), (y, c), (z, b)}[z 7→ a]

= {(x, a), (y, c), (z, a)} .

16

Environments give us a way to interpret terms that contain variables.

Since the meaning of a variable (hence of the term that contains it) is

dependent on the value assigned to it (which is encoded in an

environment), we can interpret a term t as a function parameterized by an

environment σ, such that domσ contains the (free) variables of t.

Example: Suppose t = g(f(x), c). We can interpret tM as a function on

environments σ whose domain includes x, as follows:

tM(σ) = gM(f(x)M(σ), cM(σ))

= gM(fM(σ(x)), cM) .

Note that constants (like c) are also interpreted as functions on

environments; they just don’t do anything with the environments.

Notice how the interpretation of t interprets the variable x as whatever it is

assigned to by σ, the environment by which tM itself is parameterized.

17

The same interpretation technique applies to predicates. We now

interpret a predicate application P (t1, . . . , tn) as a B-valued

function on an environment σ whose domain includes the free

variables of t1, . . . , tn.

Example: Consider our earlier example, L(x, c). Then we have

(L(x, c))M(σ) = LM(σ(x), cM) .

18

What we have so far

We would like to have a notion of an interpretation of formulas in

predicate logic, analogous to our interpretation functions Φ in

propositional logic.

For predicate logic, interpretation functions must be taken in the

context of a particular modelM. For a predicate formula ψ,

therefore, we use ΦM to denote an interpretation within the model

M, and write the interpretation of ψ as

ΦM(ψ) .

Note that ΦM(ψ) must itself be a function on environments whose

domain includes the free (but not the bound) variables of ψ.

19

So far, we are able to express the interpretations of terms and

predicate applications:

ΦM(P (t1, . . . tn))(σ) = PM(ΦM(t1)(σ), . . . ,ΦM(tn)(σ))

Note that the action of Φ is completely determined by the model

M, so there is no difference between

ΦM(P (t1, . . . tn))

and

(P (t1, . . . tn))M .

We use the ΦM notation primarily to enforce the analogy with the

semantics of propositional logic.

20

What comes next

We still need to extend the definition of our interpretation function

ΦM to accommodate connectives and quantifiers.

21

Interpreting connectives

In the context of propositional logic, we defined

Φ(ψ1�ψ2) = meaning(�)(Φ(ψ1),Φ(ψ2)) .

For predicate logic, the definition is much the same, except that we

must also account for the additional environment parameter:

ΦM(ψ1�ψ2)(σ) = meaning(�)(ΦM(ψ1)(σ),ΦM(ψ2)(σ)) .

The definition of the meaning function for each connective is

unchanged.

For the unary negation operator, ¬, we have, of course,

ΦM(¬ψ)(σ) = meaning(¬)(ΦM(ψ)(σ)) .

22

Interpreting quantifiers

Finding definitions for ΦM(∀xψ) and ΦM(∃xψ) is trickier. We

will have to reason carefully about functions on environments.

To begin, we will define two special constant functions TM and

FM:

TM(c) := T

FM(c) := F

These are the constant B-valued functions for truth and falsehood

that take an arbitrary c ∈ AM, ignore it, and simply return T and

F , respectively.

23

Consider the expression ΦM(∀xψ). This interpretation denotes a

B-valued function on environments σ such that domσ contains the

free (but not the bound) variables in ∀xψ.

In particular, domσ does not contain x.

So let σ0 be an environment that contains the free (but not the

bound) variables in ∀xψ, so that

ΦM(∀xψ)(σ0)

is a valid B-valued expression. Then since x 6∈ domσ0, the

expression

ΦM(ψ)(σ0)

is not valid, because x is (presumably) free in ψ.

24

Hence, we cannot move directly from ΦM(∀xψ)(σ0) to some

expression involving ΦM(ψ)(σ0).

In order to apply ΦM to ψ, we must extend the environment σ0 to

include x.

Suppose we wish to assign x the value c ∈ AM. Then we would

interpret ψ in the environment σ0[x 7→ c]:

ΦM(ψ)(σ0[x 7→ c])

Since we don’t know which c we want to assign to x, what we are

really describing is a B-valued function on AM:

the function f such that f(c) = ΦM(ψ)(σ0[x 7→ c])

25

Aside: λ-notation

Creating functions using notation like

the function f such that f(c) = ΦM(ψ)(σ0[x 7→ c])

is really cumbersome. The problem is the need, within our notation,

for every function to have a name. To streamline things a bit, we will

introduce the notation

λc.ΦM(ψ)(σ0[x 7→ c])

to mean

the function f such that f(c) = ΦM(ψ)(σ0[x 7→ c]) .

26

In general, the expression

λx.E

denotes a function that takes a parameter x and returns the value

E.

Observe that our constant functions TM and FM can also be

expressed in λ-notation:

TM = λc.T

FM = λc.F

There is a rich body of theory associated with the λ-notation (called

the λ-calculus), but we do not discuss it here (see CS442). We use

the notation simply as a convenience.

27

Back to interpreting quantifiers...
So far, we have broken down ΦM(∀xψ)(σ0) into the function

λc.ΦM(ψ)(σ0[x 7→ c])

that takes as a parameter the value we wish to assign to x and returns an

interpretation of the formula (i.e., a truth value).

Now, since we are interpreting the universally quantified formula ∀xψ, we

would like the interpretation to return T independent of our choice of c.

Thus, we interpret ΦM(ψ)(σ) as follows:

ΦM(∀xψ)(σ) =

 T if (λc.ΦM(ψ)(σ[x 7→ c])) = TM

F otherwise

(σ0 renamed back to σ for brevity)

28

For existential quantifiers, the development is similar. We now wish

to define ΦM(∃xψ)(σ). As before, we arrive at the function

λc.ΦM(ψ)(σ0[x 7→ c]) .

This time, however, we do not need this function to return T for all

values of c, but only for at least one value of c. Equivalently, we

want that the function will not return F for all values of c. Hence, we

can interpret the existential formula ∃xψ as follows:

ΦM(∃xψ)(σ) =

 F if (λc.ΦM(ψ)(σ[x 7→ c])) = FM

T otherwise

29

In summary, the interpretations of quantified formulas are as follows:

ΦM(∀xψ)(σ) =

 T if (λc.ΦM(ψ)(σ[x 7→ c])) = TM

F otherwise

ΦM(∃xψ)(σ) =

 F if (λc.ΦM(ψ)(σ[x 7→ c])) = FM

T otherwise

For the sake of comparison, here are the (slightly rephrased) interpretations

of conjunction and disjunction in propositional logic:

Φ(ψ1 ∧ ψ2) =

 T if Φ(ψi) = T for each i

F otherwise

Φ(ψ1 ∨ ψ2) =

 F if Φ(ψi) = F for each i

T otherwise

30

The interpretations for quantifiers are more complex, but clearly

inspired by, the interpretations for ∧ and ∨.

As an aside, the dependence of interpretations on environments

can also be expressed using λ-notation:

ΦM(∀xψ) = λσ.

 T if (λc.ΦM(ψ)(σ[x 7→ c])) = TM

F otherwise

ΦM(∃xψ) = λσ.

 F if (λc.ΦM(ψ)(σ[x 7→ c])) = FM

T otherwise

31

Semantic entailment in predicate logic

We are now in a position do define a semantic entailment in the

context of predicate logic.

We say φ1, . . . , φn |= ψ (i.e., φ1, . . . , φn entail ψ) if for all

modelsM and all environments σ, if

ΦM(φ1)(σ) = · · · = ΦM(φn)(σ) = T ,

then

ΦM(ψ)(σ) = T .

Notice that this definition requires that the entailment hold for all

models —of which there are infinitely many; hence, simple truth

table do not suffice to establish semantic truths in predicate logic!

32

Time for an example
Consider the sentence “None of Alma’s lovers’ lovers love her.” Here

“Alma” can be a constant a, and the concept “ x loves y” can be a

binary predicate L(x, y). We can then represent the above

sentence as the following formula:

∀x∀y(L(x, a) ∧ L(y, x)→ ¬L(y, a)).

Intuitively, L(x, a) says that x is Alma’s lover, and L(y, x) says

that y loves x, so L(x, a) ∧ L(y, x) says that y is one of Alma’s

lovers’ lovers. ¬L(y, a) says that y does not love Alma, and the

quantifiers make sure this is true for any x, y.

Consider the modelM defined by AM = {p, q, r}, aM = p,

LM = {(p, p), (q, p), (r, p)}. How can we decide ifM models

this formula?

33

One way to do it is to apply the definition of ΦM systematically—but

this is cumbersome in the presence of quantifiers.

Instead, let us focus on the subformulas L(x, a) ∧ L(y, x) and

¬L(y, a).

In order to interpret these formulas, we need an environment. Let σ

be the environment {(x, p), (y, q)}. Then

ΦM(L(x, a) ∧ L(y, x))(σ)

= meaning(∧)(ΦM(L(x, a))(σ),ΦM(L(y, x))(σ))

= meaning(∧)(LM(σ(x), aM), LM(σ(y), σ(x)))

= meaning(∧)(LM(p, p), LM(q, p))

= meaning(∧)(T, T)

= T

34

For ¬L(y, a), we have

ΦM(¬L(y, a))(σ) = meaning(¬)(ΦM(L(y, a))(σ))

= meaning(¬)(LM(σ(y), aM))

= meaning(¬)(LM(q, p))

= meaning(¬)(T)

= F

Putting these together, we have

ΦM(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ)

= meaning(→)(ΦM(L(x, a) ∧ L(y, x))(σ),ΦM(¬L(y, a))(σ))

= meaning(→)(T, F)

= F

35

Now, let σ0 be an environment whose domain does not include x

and y. Then we have

ΦM(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ)

= ΦM(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ0[x 7→ p][y 7→ q])

= (λb.λc.ΦM(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ0[x 7→ b][y 7→ c]))pq

Since ΦM(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ) = F , the

expression

λc.ΦM(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ0[x 7→ a][y 7→ c])

cannot be equal to TM. Hence,

ΦM(∀y(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ[x 7→ p]) = F

36

But then

λb.ΦM(∀y(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ[x 7→ b])

cannot be equal to TM. Hence,

ΦM(∀x∀y(L(x, a) ∧ L(y, x)→ ¬L(y, a))(σ) = F

and the formula is false under this model. Hence, it is not a

semantic truth.

We have treated this example very formally. Informally, we can

reason about the formula in a much more intuitive way. Since the

statement has the form ∀x∀yφ, refuting it simply amounts to finding

specific assignments to x and y such that ¬φ under these

assignments.

37

Quantifier rules ... informally
In order to facilitate semantic reasoning about quantified formulas, we will

take a moment to give a more intuitive characterization for them.

Formally, ∀xφ is interpreted as follows:

ΦM(∀xψ)(σ) =

 T if (λc.ΦM(ψ)(σ[x 7→ c])) = TM

F otherwise

We can rewrite the top condition as follows:

ΦM(∀xψ)(σ) =

 T if ΦM(ψ)(σ[x 7→ c])) = T for every c

F otherwise

Thus ΦM(∀xψ)(σ) = T if every assignment of a value to x in ψ yields

semantic truth.

38

Similarly, ∃xφ is interpreted as follows:

ΦM(∀xψ)(σ) =

 F if (λc.ΦM(ψ)(σ[x 7→ c])) = FM

T otherwise

We can rewrite the top condition as follows:

ΦM(∀xψ)(σ) =

 F if ΦM(ψ)(σ[x 7→ c])) = F for every c

T otherwise

Thus ΦM(∃xψ)(σ) = T if some assignment of a value to x in ψ

yields semantic truth.

39

In predicate logic, we say Γ |= ψ if and only if for all modelsM
and all environments σ, whenever ΦM(φ)(σ) = T for all φ ∈ Γ,

then ΦM(ψ)(σ) = T as well.

This seems a very strong condition: how do we check this for all

possible models? We will demonstrate that this is possible, through

careful reasoning, for the quantifier equivalences discussed in the

last module. But first we will define notions of satisfiability, validity,

and consistency.

The formula ψ is valid if and only if |= ψ. Note that this condition is

implicitly quantified universally over all models and all environments.

The set Γ is consistent (or satisfiable) if and only if there is a model

M and an environment σ such that for all φ ∈ Γ,

ΦM(φ)(σ) = T .

40

In the previous module, we proved

∀x(P (x) ∨Q(x)),∃x(¬P (x)) ` ∃xQ(x). Now we will give an

argument that ∀x(P (x) ∨Q(x)),∃x(¬P (x)) |= ∃xQ(x).

Consider a modelM satisfying ∀x(P (x) ∨Q(x)) and

∃x(¬P (x)). The truth of the second formula tells us that there is

an a ∈ AM such that (a) 6∈ PM. But the truth of the first formula

tells us that for an environment σ that maps x to a, P (x) ∨Q(x)
is assigned true. Since P (x) isn’t true in σ, Q(x) must be. And

with Q(x) true in some environment, ∃xQ(x) is true inM, which

shows that the original entailment holds.

41

The informal argument on the previous slide avoided much notation;

here is a more precise though perhaps less readable version.

Suppose ΦM(∀x(P (x) ∨Q(x)))(σ) = T and

ΦM(¬P (x))(σ) = T .

Then for some a ∈ AM, ΦM(¬P (x))(σ[x 7→ a]) = T , and so

ΦM(P (x))(σ[x 7→ a]) = F . On the other hand,

ΦM(∀x(P (x) ∨Q(x)))(σ) = T means that

ΦM(P (x) ∨Q(x))(σ[x 7→ a]) = T . Knowing that

ΦM(P (x))(σ[x 7→ a]) = F , we must have

ΦM(Q(x))(σ[x 7→ a]) = T , and thus ΦM(∃xQ(x))(σ).

42

The semantics of equality (2.4.3)

We use the term intensional equality to mean equality in the

syntactic sense, as in t = t for any term t.

But we also want to talk about equality in a semantic sense.

Suppose in a particular modelM, fM maps the interpretation of a

to c, and gM maps the interpretation of b to c. We then want the

formula f(a) = g(b) to be assigned T .

We ensure this by mandating that =M should always be the

equality relation on the set AM. This notion is called extensional

equality .

43

Soundness and completeness
Intuitively, the soundness of predicate logic, which means that

Γ ` ψ implies Γ |= ψ, is not surprising; the rules of natural

deduction are set up to preserve truth under interpretation.

We can see how the earlier proof of the soundness of propositional

logic, which proceeded by structural induction on formulas, can be

extended to cover predicate logic. Formulas are a bit more

complicated, and we need some arguments about models similar to

the one we just did.

The completeness of predicate logic means that Γ |= ψ implies

Γ ` ψ. This is more surprising, because we cannot mimic our

earlier proof for propositional logic. That put together information

from 2n valuations (models) of a formula to yield a long finite proof.

44

But for predicate logic, we may not have a finite number of models,

and they may be of very different types. It is not at all clear how to

put all this information together to yield a proof.

The completeness of predicate logic was proved by Kurt Gödel in

his Ph.D dissertation for the University of Vienna in 1930. A number

of simpler proofs have been given by others, notably Henkin and

Herbrand.

Gödel is more famous for two incompleteness theorems, which we

will discuss shortly. Both the completeness and incompleteness

theorems are proved in detail in PMath 432.

Rather than give the proofs of soundness and completeness, we will

discuss some implications of them.

45

The most immediate implication is that, as with propositional logic,

we have a way to show that a formula φ does not have a proof in

natural deduction. By soundness, it suffices to demonstrate a model

in which it is assigned false by our semantics.

This corresponds to the practice of demonstrating that a claim is

false by showing a counterexample.

46

As an example of the use of counterexamples to demonstrate

invalidity, consider the sequent

∀x(P (x) ∨Q(x)) ` ∀xP (x) ∨ ∀xQ(x). We will show that this

is invalid by giving a model which satisfies the LHS but not the RHS.

Let A = {a, b}, PM = {(a)}, QM = {(b)}, and let σ denote

the empty environment. Then ΦM(∀x(P (x) ∨Q(x)))(σ) = T ,

but ΦM(∀xP (x) ∨ ∀xQ(x))(σ) = F .

Thus ∀x(P (x) ∨Q(x)) 6|= ∀xP (x) ∨ ∀xQ(x), and by

soundness, ∀x(P (x) ∨Q(x)) 6` ∀xP (x) ∨ ∀xQ(x).

47

Gödel’s proof of completeness was not effective ; it did not provide a

method for definitely deciding whether a formula was provable or

not. Note that we have such a method for propositional logic; we

can simply try all 2n possible interpretations, where n is the number

of atoms in the formula.

Since a proof can be mechanically checked for validity, we can

obtain a partial result; if a formula is provable, we can find a proof by

generating all possible strings over the alphabet in which our proofs

are written, and testing each one to see if it is a valid proof of the

formula. This is not necessarily a fast or efficient algorithm, but it will

find the proof. Provability is semi-decidable .

There does not seem to be any corresponding way to conclude that

no proof exists.

48

By completeness, if we can find a model in which the formula is not

valid, we can conclude that it is not provable. But such a model may

be infinite, and we cannot check all possible interpretations of

functions and predicates. In fact, there is no algorithm to test

whether a formula in predicate logic is provable or not; this is

undecidable .

To show this requires a formal model of computation. Such a model

of computation, and a proof of the undecidability of provability, was

first described by the American logician Alonzo Church in 1936. His

model of computation was the lambda calculus, and his proof made

heavy use of Gödel’s incompleteness result.

Independently, a few months later, the British mathematician Alan

Turing came up with a different model and a simpler proof.

49

Both Church’s and Turing’s proofs first demonstrated that there was

no algorithm to answer questions about programs. Church showed

it was impossible to decide whether two programs were functionally

identical, and Turing showed that it was impossible to decide

whether a program would halt.

They then showed that predicate logic could express the questions

they were asking; hence it is also undecidable. A similar proof is

given in section 2.5 of the text, where predicate logic is used to

express the existence of a solution to a “correspondence problem”

defined by the American mathematician Emil Post.

Post’s correspondence problem is proved undecidable in CS 365;

Turing’s proof is given in CS 365 and 360; and Church’s lambda

calculus is studied in CS 442.

50

These results, proved in the 1930’s, demonstrated limitations to

computation even before electronic computers existed, and were a

powerful influence on the subsequent development of hardware and

software.

They continue to be important. We saw earlier that while

satisfiability, validity, and provability are all decidable for

propositional logic, they apparently cannot be determined efficiently

for general formulas. Now we see that the greater expressivity of

predicate logic makes these questions undecidable.

The tradeoff between expressivity and efficiency, in both theoretical

and practical terms, is the subject of active research.

51

Expressiveness of predicate logic (2.6)

Because many properties of our specifications, our algorithms, and

our programs can be expressed in logical terms, we naturally wish

to make our logical languages as expressive as possible, though not

at the cost of being unable to work with the resulting formulas.

Our example of the limited expressibility of first-order predicate logic

will involve directed graphs, which are used in CS 135, CS 240,

Math 239, CS 341, and many other courses. A directed graph G

consists of a finite set V of vertices and an binary edge relation E.

We often visualize graphs by drawing dots to represent each of the

elements of V , and drawing an arrow from x to y iff (x, y) ∈ E (in

which case we say “there is an edge from x to y”).

52

A

B

C

D

E

F

K H

J

To represent graphs in the language of predicate logic, we let the

variables stand for nodes (vertices), and use a binary predicate

symbol E for the edge relation. That is, if a graph G contains an

edge from u to v, then E(u, v) is true in the model defined by G.

As an example, the formula ∃x∃yE(x, y) is true for graphs that

have at least one edge. This is the formalization of “The graph has

at least one edge.”

53

What formulas express the following statements about graphs?

“The graph has at least two vertices.”

“The graph has at least one edge going from a vertex to itself.”

“The graph contains a vertex to which no edge goes.”

54

Going in the other direction, how can we intuitively express the

following formulas?

∃x∀yE(y, x)

∀x∀y(E(x, y)→ E(y, x))

∀x∀yE(x, y)

55

The question of reachability in directed graphs (given a graphG and

two nodes u, v, is there a directed path from u to v?) is important in

many areas of computer science. A program using pointer-based

data structures is free of memory leaks if every allocated segment

of memory can be reached from a program variable. Finding

solutions to solitaire puzzles, or more generally, goal search and

motion planning can be expressed in terms of reachability.

56

Math 239 and CS 341 cover efficient algorithms for reachability

when the graph is given explicitly. But there are many computational

situations where the graph is not explicit. For example, the nodes of

the graph could be states of a program or system, and the edges

could represent steps or transitions. Questions of freedom from

error, safety, or freedom from deadlock can then be expressed in

terms of reachability.

It is therefore surprising to learn that reachability cannot be

expressed in predicate logic. Most of the “impossibility” results

discussed in this course are only stated, not proved, but we can

prove this one from completeness, by way of a couple of nice results

in formal logic. First, though, we should discuss what it means to

attempt to express reachability in predicate logic.

57

To talk about reachability using a formula, we again let the variables

stand for nodes (vertices), and use binary predicate symbol E for

the edge relation. That is, if in a particular graphG, there is an edge

from u to v, then E(u, v) is true in the model defined by G.

A formula describing a more general relationship between u and v

is one in which u and v are the only free variables. For instance, the

formula ∃x(E(u, x) ∧ E(x, v)) is made true by a model defined

by G if and only if there is a path of length 2 in G.

The difficulty comes because a path from u to v in an arbitrary

graph can have unbounded (though finite) length, and we need to

express reachability with a fixed (finite) formula.

58

We begin our proof that reachability is not expressible in predicate

logic with an important and general result.

Compactness Theorem (2.24) : Let Γ be a (possibly infinite) set of

sentences of predicate logic. If all finite subsets of Γ are satisfiable,

then so is Γ.

Proof : Suppose that all finite subsets of Γ are satisfiable, but Γ is

not satisfiable. Then Γ |= ⊥ (since no model makes all φ ∈ Γ
true). By completeness, Γ ` ⊥. This must have a finite proof,

mentioning only a finite subset ∆ of sentences from Γ. Then

∆ ` ⊥, and by soundness, ∆ |= ⊥. But this is a contradiction to

the assumption that ∆, as a finite subset of Γ, is satisfiable. �

59

As a warmup on the use of compactness, we prove one of a number

of related theorems with the names of Löwenheim and Skolem on

them.

Theorem (2.25) : Let ψ be a sentence of predicate logic such that

for any natural number n ≥ 1, there is a model of ψ with at least n

elements. Then ψ has a model with infinitely many elements.

Proof : For all n, let φn be defined as:

∃x1∃x2 . . .∃xn
∧

1≤i<j≤n

¬(xi = xj).

φn asserts that there are at least n elements. Now define

Γ = {ψ} ∪ {φn | n ≥ 1}. We will apply the compactness

theorem to Γ.

60

To do so, we have to show that any finite subset ∆ of Γ is

satisfiable. Let ∆ be an arbitrary finite subset of Γ, and let k be the

index of the “largest” formula φn in ∆. Since there is a model of ψ

with at least k elements, {ψ, φk} is satisfiable.

But since φk → φn is valid for any n ≤ k, ∆ must be satisfiable

as well. Now we can invoke compactness and say that Γ is

satisfiable by some modelM. But ifM is finite, say of size t, then

it cannot satisfy φt+1. ThusM is infinite. �

Intuitively, this theorem says that the concept of “finiteness” is not

expressible in predicate logic. Next, we will use compactness to

prove that reachability is not expressible in predicate logic.

61

Theorem (2.26) : There is no formula φ in predicate logic with free

variables u, v and the following property: φ is satisfied by a model

defined by a directed graph G if and only if there is a path in G from

the node associated with u to the node associated with v.

Proof : Suppose that there was such a φ. We will derive a

contradiction by using φ to construct an infinite set ∆ which is not

satisfiable, even though every finite subset of it is.

Recall that E is the edge relation for G. The formulas in ∆ will use

E as well as two constants c, c′. We define φ0 as c = c′ and

φn = ∃x1∃x2 . . .∃xn(E(c, x1)∧E(x1, x2)∧. . .∧E(xn−1, c
′))

62

Intuitively, the formula φn says “There is a path from c to c′ of

length n”, so the negation ¬φn says “There is no path from c to c′

of length n”.

If we substitute c, c′ for the free variables u, v in φ to obtain

φ[c/u][c′/v], this intuitively says “There is some finite path from c

to c′.” If φ really expresses reachability, then it is true in a model if

and only if one of the formulas φn is true in that model.

Let ∆ = {¬φn | n ≥ 0} ∪ {φ[c/u][c′/v]}. By construction, ∆
is unsatisfiable, because the first set says “There is no path of any

finite length from c to c′” and the second set says that there is one.

63

But any finite subset of ∆ is satisfiable. Such a subset can contain

at most a finite subset of {¬φn | n ≥ 0}. Suppose k is the largest

index such that ¬φk is in the subset.

Consider the model consisting of a graph which is a single path

v1, v2, . . . , vk+1, where c is interpreted as v1 and c′ is interpreted

as vk+1. Then there aren’t paths short enough from v1 to vk+1 to

make the φi false in this model, but there is a path (of length k+ 1)
showing that φ[c/u][c′/v] is true. So this model satisfies the finite

subset of ∆.

This is a contradiction to the Compactness Theorem, and therefore

the formula φ expressing reachability cannot exist. �

Since predicate logic is inadequate to express this important

concept, we must go beyond it.

64

Existential second-order logic

The language of predicate logic we have defined is called

first-order . Second-order logic extends first-order logic by

permitting quantification not just over variables, but over predicate

symbols as well. Here is non-reachability expressed in

second-order logic:

∃P∀x∀y∀z (P (x, x)

∧ (P (x, y) ∧ P (y, z)→ P (x, z))

∧ (E(x, y)→ P (x, y))

∧ (¬P (u, v))) .

65

∃P∀x∀y∀z (P (x, x)

∧ (P (x, y) ∧ P (y, z)→ P (x, z))

∧ (E(x, y)→ P (x, y))

∧ (¬P (u, v))) .

... how do we read this?

The forumula asserts the existence of a (binary) relation P . The first

two clauses tell us that P is reflexive and transitive.

The third clause tells us that P contains the edge relation E; hence

P is a reflexive and transitive extension of E.

Thus, P contains the reflexive, transitive closure of E, which is

reachability.

66

The fourth clause asserts that P does not contain (u, v). Hence

(u, v) is not in the reflexive, transitive closure of E (otherwise

(u, v) would be in P), so v is not reachable from u.

In total, we can read the formula as, “There is a reflexive, transitive

extension of the edge relation that does not contain (u, v),” which is

equivalent to non-reachability.

By negating this formula, we obtain a formula expressing

reachability.

67

Second-order logic allows arbitrary quantification over predicates.

However, we only used an existential quantifier in our definition of

non-reachability, and so we have a formula of existential

second-order logic.

We showed how to express non-reachability in existential

second-order logic; the book mentions that reachability is also

expressible in existential second-order logic. This is a consequence

of a more general, and quite surprising, result.

68

Earlier, we discussed the fact that the satisfiability problem for

propositional logic was “NP-complete” and therefore thought to be

hard computationally. In CS 341, you learn that this really means

“complete for the class NP”. Intuitively, NP is the class of problems

whose solutions are efficiently verifiable. Many problems have this

property: it may be hard to find a solution, but if someone gives you

one, it is easy to verify that it is a solution.

Fagin proved in 1974 that the set of graph properties in NP are

exactly those which can be expressed in existential second-order

logic. This is surprising because it relates a notion of efficient

computation to one of description with no mention of a model of

computation. The field of descriptive complexity explores similar

results and their implications (e.g. in databases).

69

Other proof systems

The other proof systems we briefly discussed for propositional logic

(semantic tableaux, sequent calculus, and transformational proofs)

can all be extended to propositional logic in a fairly straightforward

fashion.

Of these, the most important in practical terms is probably

transformational proofs. Recall that the idea, when applied to

propositional logic, was to use equivalences in an algebraic fashion.

The key advantage was that we could make a substitution of one

equivalent subformula for another, whereas for natural deductions,

the syntactic changes only happen at the “top level”.

70

We extend the notion of transformational proof to predicate logic by

allowing substitutions based on the quantifier equivalences

discussed in this module (and summarized in Theorem 2.13 in the

text).

As before, mathematical proofs involving quantification are in

practice a mixture of natural deduction and transformational proofs.

Notions such as proof by contradiction remain important, and new

notions of natural deduction for predicate logic such as

∀-introduction become important.

Being able to understand and derive such mathematical proofs

requires familiarity with quantifier equivalences as well as

knowledge of which possible equivalences fail to hold and what

parts of them might be salvageable.

71

For example, we know that

∀x(P (x) ∨Q(x)) 6|= ∀xP (x) ∨ ∀xQ(x). On the other hand,

we can show that ∀xP (x) ∨ ∀xQ(x) |= ∀x(P (x) ∨Q(x)). So

a transformation in one direction is possible.

However, it is not always clear in which direction the transformation

holds. As you proved at the end of Assignment 2, it is possible to

have φ1 |= φ2 (rather than full equivalence), and yet have a

formula ψ in which the transformation of φ1 to φ2 is not valid. It is

possible (though we do not discuss it) to characterize the

circumstances under which transformation via a one-direction

entailment is possible, and the direction in which the transformation

must be made, but we will not pursue it here.

72

Among the most important quantifier equivalences are the “de

Morgan”-style ones, such as ¬∀xφ ≡ ∃x¬φ.

Note, however, that this particular equivalence is only a full

equivalence under classical reasoning. Under intutionist reasoning

we only have the sequent ∃x¬φ ` ¬∀xφ. Hence, as intuitionists,

we may only reason with the unidirectional entailment

∃x¬φ |= ¬∀xφ and so we must be careful that transformation of

the left-hand side to the right-hand side is valid in the context in

which we are performing it.

To illustrate an extreme example of the use of such equivalences,

we will quote a central theorem from CS 360 and CS 365, to

examine its form (rather than its meaning or proof).

73

The pumping lemma describes a property of regular languages,

sets of strings that are accepted by finite state machines (or

equivalently, described by regular expressions). These are first

studied in CS 241. It is of the form “If L is regular, then φ holds”. φ

happens to be describable in first-order logic using quantifiers.

Here is the form of φ, as typically stated in CS 360. Don’t worry

about the precise meaning.

L ∈ R → ∃n
∀s such that |s| = n

∃x∃y∃z such that s = xyz

∀i ≥ 0 xyiz ∈ L

74

The theorem states a property of regular languages, but it is almost

never applied to regular languages. Instead, it is applied to

languages believed nonregular, in the contrapositive. Instead of

ψ → φ, it is used in the form ¬φ→ ¬ψ. The contrapositive of the

pumping lemma looks like this:

¬(∃n
∀s such that |s| = n

∃x∃y∃z such that s = xyz

∀i ≥ 0 xyiz ∈ L)→ L 6∈ R

In order to work with this form, the negation has to be pushed all the

way through the nested quantifiers, using the deMorgan-style

transformations.

75

This yields the following formula:

(∀n
∃s such that |s| = n

∀x∀y∀z such that s = xyz

∃i ≥ 0 xyiz 6∈ L)→ L 6∈ R.

This is the form in which CS 360 students actually work with the

pumping lemma in order to prove that a language L is not regular.

Without exposure to formal logic, it may not be clear why this form is

equivalent to the original statement of the pumping lemma.

76

What’s next?

The formulas on the previous slides did not conform to our formal

definition of formulas in predicate logic, because they made intuitive

use of symbols from set theory and notation for strings that cannot

be interpreted arbitrarily. Notation from arithmetic and higher

mathematics is also important in the proofs we encounter and the

specifications we wish to write.

In the next module, we will discuss how these familiar informal

notions can be made formal, and cover some rules of thumb about

how to identify formal elements in informal descriptions and how to

work with them.

77

Goals of this module

You should understand the semantics of predicate logic, how to

apply it for individual formulas, and how to reason about it in general.

You should be able to come up with counterexamples for invalid

formulas.

You should understand the meaning of soundness and

completeness for predicate logic, and the implications of it as

discussed, including the compactness theorem.

You should understand why reachability is not expressible in

first-order logic, and how it can be expressed in second-order logic.

You should understand the ideas of transformational proof for

predicate logic, and its use in practice.

78

